
THE REGIOSPECIFIC ACYLATION OF FULVENES

Howard Alper^{*,1} and David E. Laycock Department of Chemistry, University of Ottawa Ottawa, Ontario, Canada KIN 9B4

<u>Summary</u>: 1-Acylated fulvenes were the only monoketones formed by treatment of fulvenes with methyl iodide, carbon monoxide, catalytic quantities of benzyltriethylammonium chloride and dicobalt octacarbonyl, in a two-phase system [5N NaOH/C₆H₆].

Although there have been extensive investigations of the synthesis of fulvenes, less has been reported on the chemistry of this interesting class of compounds.^{2,3} Much of the described chemistry involves the exocyclic double bond and, with the exception of the Vilsmeier reaction², no useful routes have been developed for the functionalization [e.g. acylation, alkylation, nitration] of the fulvene moiety. We now report a simple method for the direct, and regiospecific, acylation of fulvenes.

Fulvenes $[1,R=R'=Ph,p-FC_{6}H_{4},p-CH_{3}C_{6}H_{4},p-CH_{3}OC_{6}H_{4},C_{10}H_{14}; R=1-C_{10}H_{7},R'=Ph]$ were acylated using organocobalt carbonyl and phase transfer catalysis⁴. The reactions of fulvenes were effected at room temperature and atmospheric pressure using a sodium hydroxide (5N)/benzene two-phase system, methyl iodide, carbon monoxide, and catalytic amounts of dicobalt octacarbonyl and benzyltriethylammonium chloride. After 4.5-5.5 hours, work-up afforded the l-acetyl-6,6-disubstituted fulvenes (2) in 28-74% yields (Table 1).

In the case of the fluorophenylsubstituted fulvene $1,R=R'=p-FC_6H_4$, a 1,4-diacetylated by-product was also formed. When adamantylidenefulvene $[1,R=C_{10}H_{14}]$ was used as the reactant fulvene, both $2 (R=C_{10}H_{14})$ and the α -diketone $4 (R=C_{10}H_{14})$ were formed, the latter resulting from a novel double carbonylation reaction. No 2-acetylated product was detected in any of these reactions. Identification of 2-4 was made on the basis of analytical and spectral [ir,nmr($^{13}C,^{1}H$),ms] data, with the appearance of an ABX pattern for the protons of the cyclopentadiene ring of 2 being particularly informative.

1,R=,R'=	PRODUCT ^a	YIELD (%)	∨ _{CO} (cm ⁻¹)	MS (m/e)
Н,Н	<u>2</u> ,R=R'=H	74	1675	272
p-FC ₆ H ₄ ,p-FC ₆ H ₄	2,R=R'=p-FC6H4	46	1666	308
	<u>3</u> ,R=R'=p-FC ₆ H ₄	26	1676	350
p-CH ₃ C ₆ H ₄ ,p-CH ₃ C ₆ H ₄	<u>2</u> ,R=R'=p-CH ₃ C ₆ H ₄	49	1670	300
р-СН ₃ ОС ₆ Н ₄ ,р-СН ₃ ОС ₆ Н ₄	2,R=R'=p-CH30C6H4	71	1672	332
C ₁₀ H ₁₄	<u>2</u> ,R+R'=C ₁₀ H ₁₄	28	1680	240
	<u>4</u> , R+R'=C10 ^H 14	23	1723	268
1-C ₁₀ H ₇ ,Ph	<u>2</u> ,R=1-C ₁₀ H ₇ ,R'=Ph	42	1675	322

Table 1: PRODUCTS OBTAINED BY ACYLATION OF FULVENES

^aSatisfactory C,H analyses (\pm 0.4%) were obtained for all products.

The regiospecificity of the acylation reaction can be rationalized by assuming 1,2-addition of acetylcobalt tetracarbonyl to 1 which would, after loss of carbon monoxide, give 5. The latter would be favored, for steric reasons, over the isomeric complex $\underline{6}$. Deprotonation of $\underline{5}$,

followed by elimination of the cobalt carbonyl unit [i.e. regeneration of $Co(CO)_{A}$], would give 2.

The phase transfer catalyzed acylation of fulvenes constitutes a simple, convenient, and exceedingly mild method for the regiospecific introduction of an acyl substituent. Furthermore, ${2\over 2}$ can be easily converted into other functionalities without affecting the fulvene skeleton [e.g. sodium borohydride gives the alcohol in 90-96% yields, and Wittig reaction with $\mathsf{Ph}_{3}\mathsf{P}$ =CHCOOR affords the vinyl fulvene in 62-71% yields].

The following procedure is typical: A mixture of $Co_2(CO)_8$ [.044 g, .13 mmol] in benzene (20 ml) and benzyltriethylammonium chloride [0.20 g, 0.88 mmol] in 5N NaOH (20 ml) was stirred under a carbon monoxide atmosphere for 1.5 hours. Methyl iodide (2 ml) was added and, after the reaction mixture was stirred for 2 hours, 6,6-di(4-methylphenyl)fulvene [0.39 g, 1.51 mmol] in benzene (3 ml) was added and stirring was continued for two more hours. The phases were separated, the organic phase was washed (three times) with water, dried (Na_2SO_{a}) , and concentrated. Chromatography on silica gel using 30% ether-hexane as eluant gave 0.22 g (49%) of $\underline{2}$,R=R'=p-CH₃C₆H₄, m.p. 143.5-144.0 °C.

REFERENCES

- 1. E.W.R. Steacie Fellow, 1980-82.
- K. Hafner, K.H. Hafner, C. König, M. Kreuder, G. Ploss, G. Schulz, E. Strum, and K.H. Vopel, 2. Angew. Chem. Int. Ed., 2, 123 (1963). E.D. Bergmann, <u>Chem. Rev</u>., <u>68</u>, 41 (1968). H. Alper and J.K. Currie, <u>Tetrahedron Lett</u>., 2665 (1979).
- 3.
- 4.